A humane society reports that 19 of all pet dogs were adopte
A humane society reports that 19% of all pet dogs were adopted from an animal shelter. Assuming the truth of this assertion, find the probability that in a random sample of 80 pet dogs, between 15% and 20% were adopted from a shelter. You may assume that the normal distribution applies.
Solution
The distirbution of the population proportion has
mean = u(p) = 0.19
 standard deviation = s(p) = sqrt(p(1-p)/n) = sqrt(0.19*(1-0.19)/80) = 0.043860575
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    0.15      
 x2 = upper bound =    0.2      
 u = mean =    0.19      
           
 s = standard deviation =    0.043860575      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.911980748      
 z2 = upper z score = (x2 - u) / s =    0.227995187      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.180889426      
 P(z < z2) =    0.590175009      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.409285583   [ANSWER]  

