For any random variables X1 X2 and any numbers c1 c2 show th
Solution
For any random variables X1 , X2 and any numbers c1 , c2 show that,
Var ( c1X1 + c2X2 ) = c12Var(X1) + c22Var(X2) + 2c1c2Cov(X1,X2)
This we want to prove,
Let us consider , V = c1X1 + c2X2 ,
Put this values in equation Var (V) = E (V - E(V))2 (by definition of variance)
Var(V) = E [ (c1X1 + c2X2 ) - E(c1X1 + c2X2 ) ]2
= E [ (c1X1 - E(c1X1) ) + (c2X2 - E(c2X2) ]2
Now we will use the formula as,
(a + b)2 = a2 + b2 +2ab
Var(V) = E [ (c1X1 - E(c1X1) )2 + (c2X2 - E(c2X2) )2 + 2 ( (c1X1 - E(c1X1)) (c2X2 - E(c2X2)) )
taking expectation inside,
= E (c1X1 - E(c1X1) )2 + E (c2X2 - E(c2X2)2 + 2 E [ (c1X1 - E(c1X1) ) ( c2X2 - E(c2X2) ) ]
And we know that the result E (CX) = C E(X) apply this result to the equation
= c12 E(X1 - E(X1))2 + c22 E(X2 - E(X2))2 + 2c1c2 { E [ (X1 - E(X1) (X2 - E(X2) ] } ____a)
We know that,
E(X1 - E(X1))2 = Var(X1)
and E(X1 - E(X1))2 = Var(X2)
E [ (X1 - E(X1) (X2 - E(X2) ] = Cov(X1,X2)
Now put all these values in equation a) ==>
Var ( c1X1 + c2X2 ) = c12 Var(X1) + c22 Var(X2)

