A report indicates that 40 of the memory chips produced by c
A report indicates that 40% of the memory chips produced by certain manufacturer are defective. A computer store has received a shipment of 20 memory chips from the manufacturer.
a. What the probability that a least 5 of the chips in the shipment are defective?
b. What is the probability that majority of the chips in this shipment are no-defective?
c. What is the probability that the number of non-defective chips in this shipment is at least twice as many as the number of defective chips?
Solution
A)
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    20      
 p = the probability of a success =    0.4      
 x = our critical value of successes =    5      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   4   ) =    0.050951953
           
 Thus, the probability of at least   5   successes is  
           
 P(at least   5   ) =    0.949048047 [ANSWER]
**********************
b)
The probability that a chip is not defective is 1 - 0.40 = 0.60.
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    20      
 p = the probability of a success =    0.6      
 x = our critical value of successes =    11      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   10   ) =    0.244662797
           
 Thus, the probability of at least   11   successes is  
           
 P(at least   11   ) =    0.755337203 [ANSWER]
****************
c)
This happens when at least 14 are non-defective.
           
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    20      
 p = the probability of a success =    0.6      
 x = our critical value of successes =    14      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   13   ) =    0.749989328
           
 Thus, the probability of at least   14   successes is  
           
 P(at least   14   ) =    0.250010672 [ANSWER]


