Use the normal model N 110158 for the weights of the steers

Use the normal model N (1101,58) for the weights of the steers. A) What weight represents the 57th quartile? B) What weight represents the 90th quartile? C) Whats the IQR of the weights of these steers?

Solution

a)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.57      
          
Then, using table or technology,          
          
z =    0.176374165      
          
As x = u + z * s,          
          
where          
          
u = mean =    1101      
z = the critical z score =    0.176374165      
s = standard deviation =    7.615773106      
          
Then          
          
x = critical value =    1102.343226 [ANSWER]

******************

B)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.9      
          
Then, using table or technology,          
          
z =    1.281551566      
          
As x = u + z * s,          
          
where          
          
u = mean =    1101      
z = the critical z score =    1.281551566      
s = standard deviation =    7.615773106      
          
Then          
          
x = critical value =    1110.760006   [ANSWER]

****************

C)

Note that

IQR = Q3-Q1 = P75 - P25

For P75:

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.75      
          
Then, using table or technology,          
          
z =    0.67448975      
          
As x = u + z * s,          
          
where          
          
u = mean =    1101      
z = the critical z score =    0.67448975      
s = standard deviation =    7.615773106      
          
Then          
          
x = P75 = critical value =    1106.136761  

....

For P25:

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.25      
          
Then, using table or technology,          
          
z =    -0.67448975      
          
As x = u + z * s,          
          
where          
          
u = mean =    1101      
z = the critical z score =    -0.67448975      
s = standard deviation =    7.615773106      
          
Then          
          
x = P25 = critical value =    1095.863239  

Therefore,

IQR = P75 - P25 = 1106.136761 - 1095.863239

IQR = 10.273522 [ANSWER]


  
  
      

Use the normal model N (1101,58) for the weights of the steers. A) What weight represents the 57th quartile? B) What weight represents the 90th quartile? C) Wha
Use the normal model N (1101,58) for the weights of the steers. A) What weight represents the 57th quartile? B) What weight represents the 90th quartile? C) Wha

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site