Determine if each of the following functions is homogenous A

Determine if each of the following functions is

homogenous: A) x^2 - 3xy + y^2. B) x^2 + 3y - y^2. C) sqrt( 2x^4 + 6xy^3).

Enter (1) if homogeneous, or enter (0) if not homogeneous. ans:3

Solution

A Function f(x,y )is said to be Homogeneous Equation of degree n if

putting x=xt and y=yt we get f(xt,yt)= tnf(x,y)

[1] f(x,y) = x2-3xy+y2 ; f(xt,yt) = (xt)2- 3(xt)(yt) + (yt)2=t2*( x2-3xy+y2)=t2* f(x,y)

Hence above equation is Homogeneous Equation of degree 2

[2]  f(x,y) = x2+3y-y2 ; f(xt,yt) = (xt)2 +3(yt) - (yt)2= x2t2 + 3yt - y2t2

  which can not be written in  f(xt,yt)= tnf(x,y) form

  Hence above equation is NOT Homogeneous Equation

[3] f(x,y)= sqrt(2x4+6xy3) ;   f(xt,yt) =sqrt(2x4t4+6(xt)(yt)3)= sqrt(2x4t4+6xy3t4)=t2*sqrt(2x4+6xy3)=t2 f(x,y)

  Hence above equation is Homogeneous Equation of degree 2

  

Determine if each of the following functions is homogenous: A) x^2 - 3xy + y^2. B) x^2 + 3y - y^2. C) sqrt( 2x^4 + 6xy^3). Enter (1) if homogeneous, or enter (0

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site