Find the particular solutions using Laplace transforms If ne
Find the particular solutions using Laplace transforms. If necessary, use partial fraction expansion. Show your work.
y\'\'+4y=0, y(0)=1, y(pi/4)=1
Solution
y”+4y=0 y(0)=1 y(pi/4)=0
Taking Laplace transform on both sides
L((y”(0) + 4y(0)) = L(0)
Ly”(0) + 4 L(y(0)) = L (0)
Use,
L(y”) = S2L(y) - Sy(0) - y\'(0)
S2y(S) - Sy(0) - y(0) +4y(S) = 0
Put y(0) = 1
S2 y(S) - 1 - 1 + 4y(S) = 0
S2 y(S) + 4y(S) - 2 = 0
(S2 + 4) y(S) = 2
y(S) = 2 / (S2 + 4)
= 2((1/ (S2 + 22))
y(S) = 2 Sin 2t
