A civil engineer tests the compressive strength psiof a samp
A civil engineer tests the compressive strength (psi)of a sample of 20 concrete blocks. He obtains the following results: Mean = 2230 psi Standard deviation = 38 psi. A minimum psi = 2250 psi is required to use this concrete. Test the hypothesis that the concrete meets this minimum requirement. (alpha = 0.025). What is the critical t-value? What is the calculated t-value? Does this sample support the statement that the mean compressive strength of the concrete is at least 2250 psi?
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   2250  
 Ha:    u   >   2250  
               
 As we can see, this is a    right   tailed test.      
               
 Thus, getting the critical t,              
 df = n - 1 =    19          
 tcrit =    +   2.093024054   [ANSWER, CRITICAL T VALUE]
****************************  
               
 Getting the test statistic, as              
               
 X = sample mean =    2230          
 uo = hypothesized mean =    2250          
 n = sample size =    20          
 s = standard deviation =    38          
               
 Thus, t = (X - uo) * sqrt(n) / s =    -2.353755766 [ANSWER, T VALUE]
****************************          
               
 As t < 2.093, we FAIL TO REJECT THE NULL HYPOTHESIS.
Thus, we have no sufficient evidence that the concrete\'s mean compressive strength of the concrete is at least 2250 psi. [CONCLUSION]          
               

