Solve the nonhomogeneous equation y 3y 2y 4x2SolutionAuxi
     Solve the nonhomogeneous equation  y\" - 3y\' + 2y = 4x^2 
  
  Solution
Auxillary equation is D2-3D+2=0 ; (D-2)(D-1)=0; D=2 or D=1
Complementry function is C.F.=C1e2x+C2ex
Wher D=d/dx
Now PI=1/F(D)*x2
=1/(D2-3D+2)*x2
=1/2*(1+(D2-3D)/2)-1 *x2
= 1/2*(1-(D2-3D)/2 +((D2-3D)/2)2 +....Higher order of D)*x2
=1/2*( 1-D2/2+3D/2 +1/4( D4-6D3+9D2 )+......Higher order of D)*x2
=1/2*(1-D2/2+3D/2 +9D2/4+........Higher order of D)*x2
=1/2*(1+3D/2 +7D2/4+........Higher order of D)*x2
=1/2*( x2 +3x + 7/2 )
Total solution = CF +PI =C1e2x+C2ex +1/2*( x2 +3x + 7/2 )

