Solve the nonhomogeneous equation y 3y 2y 4x2SolutionAuxi

Solve the nonhomogeneous equation y\" - 3y\' + 2y = 4x^2

Solution

Auxillary equation is D2-3D+2=0 ; (D-2)(D-1)=0; D=2 or D=1

Complementry function is C.F.=C1e2x+C2ex

Wher D=d/dx

Now PI=1/F(D)*x2

=1/(D2-3D+2)*x2

   =1/2*(1+(D2-3D)/2)-1 *x2

        = 1/2*(1-(D2-3D)/2 +((D2-3D)/2)2 +....Higher order of D)*x2

=1/2*( 1-D2/2+3D/2 +1/4( D4-6D3+9D2 )+......Higher order of D)*x2

  =1/2*(1-D2/2+3D/2 +9D2/4+........Higher order of D)*x2

=1/2*(1+3D/2 +7D2/4+........Higher order of D)*x2

      =1/2*( x2 +3x + 7/2 )

Total solution = CF +PI =C1e2x+C2ex +1/2*( x2 +3x + 7/2 )

  

 Solve the nonhomogeneous equation y\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site