Prove that cos4 theta 38 12 cos2 theta 18 cos4 theta Expr
Prove that cos^4 theta = 3/8 - 1/2 cos(2 theta) + 1/8 cos(4 theta). Express the product sin(4 theta) cos (theta) as a sum containing only sines or cosine. Express the sum cos(4 theta) + cos(3 theta) as a product of sines and/or cosines.
Solution
6) cos4 = 3/8 – ½*cos2 + 1/8*cos4
LHS = cos4 = (cos2 )2 = ¼*[1 + cos2]^2 = ¼ *[1 + 2* cos2 + cos22]
= ¼ *[1 + 2* cos2 + ½ *(cos4 + 1)]
= ¼ *[3/2 + 2* cos2 + ½ * cos4]
= 3/8 + ½*cos2 + 1/8*cos4
7) Using 2 sin A cos B = sin(A + B) + sin(A B)
sin4*cos = ½ *[sin(4 + ) + sin(4 - )] = ½ *[ sin5 + sin3]
8) Using cos A + cos B = 2*cos(A + B)/2* cos(A – B)/2
cos4 + cos3 = 2*cos7/2 * cos/2
