Determine the n value of limln1nxx3 if x0Solutionlim ln 1nxx
Determine the n value of lim[ln(1+nx)]/x=3 if x-->0
Solution
lim [ln (1+nx)]/x=lim (1/x)*ln(1+nx)
We\'ll use the power property of the logarithm:
lim [ln (1+nx)]/x=lim ln[(1+nx)^(1/x)]
The limit will override the logarithm and we\'ll go near the function (1+nx)^(1/x).
ln lim (1+nx)^(1/x) = ln lim [(1+nx)^(1/nx)]*n
ln lim (1+nx)^(1/x)=ln e^n
ln lim (1+nx)^(1/x)=n*ln e
ln lim (1+nx)^(1/x)=n
But, from hypothesis, lim [ln (1+nx)]/x=3, so n=3.
![Determine the n value of lim[ln(1+nx)]/x=3 if x-->0Solutionlim [ln (1+nx)]/x=lim (1/x)*ln(1+nx) We\'ll use the power property of the logarithm: lim [ln (1+nx Determine the n value of lim[ln(1+nx)]/x=3 if x-->0Solutionlim [ln (1+nx)]/x=lim (1/x)*ln(1+nx) We\'ll use the power property of the logarithm: lim [ln (1+nx](/WebImages/9/determine-the-n-value-of-limln1nxx3-if-x0solutionlim-ln-1nxx-1001060-1761515677-0.webp)
