Simple linear regression Show all calculation details Consid
Simple linear regression. Show all calculation details. Consider the data set: (7,11), (10,0), (13,-2).
Compute and interpret the coefficient of correlation.
Compute the least squares line for this data.
Solution
mean of x = (7+10+13)/3
= 10
mean of y = (11+0-2)/2
= 3
Variace of (X)= 1/2*[(7-10)^2 +(10-10)^2 + (13-10)^2)
= 9
variance of Y = 1/2*[(11-3)^2 +(0-3)^2 + (-2-3)^2)
= 49
covariance(XY)= 1/2*[(7-10)(11-3) +(10-10)*(0-3) + (13-10)(-2-3))
= -19.5
Correlation (XY) = covariance/ [sd(x) *sd9y)]
= -19.5/3*7
=-0.952857
now equation of regression equation is Y = a +b*x
a = mean(y) - b* mean(x)
b = correlation * sd(y)/ sd(x)
b=-0.952857*7/3
b= -2.16667
a= 3-(-2.16667)*10
thus equation is
Y = 24.66667 - 2.166678 X
| = 24.66667 |
