In a sample of 101 Atlanta residents average income is 56560
In a sample of 101 Atlanta residents average income is $56,560. If the standard deviation of income in Atlanta area is $12,000 then please do the following:
- 90% confidence interval for population mean?
-95% confidence interval for population mean?
- 99% confidence interval for population mean?
-If a statistician report Atlanta median income is $55,733 since you can assume population mean is Normally distributed can you accept this number based on this number? Is there a confidence interval where $55,733 is smaller than lower bound or higher than higher bound?
Solution
a)
90% confidence:
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    56560          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    12000          
 n = sample size =    101          
               
 Thus,              
 Margin of Error E =    1964.028638          
 Lower bound =    54595.97136          
 Upper bound =    58524.02864          
               
 Thus, the confidence interval is              
               
 (   54595.97136   ,   58524.02864   ) [ANSWER]
******************
b)
95% confidence:
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    56560          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    12000          
 n = sample size =    101          
               
 Thus,              
 Margin of Error E =    2340.284467          
 Lower bound =    54219.71553          
 Upper bound =    58900.28447          
               
 Thus, the confidence interval is              
               
 (   54219.71553   ,   58900.28447   ) [ANSWER]
********************
c)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    56560          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    12000          
 n = sample size =    101          
               
 Thus,              
 Margin of Error E =    3075.655143          
 Lower bound =    53484.34486          
 Upper bound =    59635.65514          
               
 Thus, the confidence interval is              
               
 (   53484.34486   ,   59635.65514   ) [ANSWER]
************************
YES, THIS CAN BE ACCEPTED, AS 55733 IS INSIDE ALL THE CONFIDENCE INTERVALS HERE. [ANSWER]
There is no confidence interval (among the three) that has a smaller lower bound or higher higher bound than 55733. [ANSWER]


