Find a particular solution of the differential equation 54y2
Find a particular solution of the differential equation 54y+2y+y = 3xe^2x using the Method of Undetermined Coefficients (primes indicate derivatives with respect to x).
yp = ?
Solution
Since the inhomogeneous part is
3xe^{2x} so the guess for particular solution is
yp=(Ax+B)e^{2x}
yp\'=(2Ax+A+2B)e^{2x}
yp\'\'=(4Ax+4A+4B)e^{2x}
Substituting gives
-54(4Ax+4A+4B)e^{2x}+2(2Ax+A+2B)e^{2x}+(Ax+B)e^{2x}=3xe^{2x}
-216Ax-216A-216B+4Ax+2A+4B+Ax+B=3x
-211A=3 , A=-3/211
-214A-211B=0
B=-214A/211=642/211^2=642/44521
yp=(-3x/211+642/44521)e^{2x}
