Skull size of a population of rats follows a normal populati
Skull size of a population of rats follows a normal population with std dev = 10mm. Y bar = mean skull size of a random sample of 64 individuals from the population. µ = population mean skull size. Find the two probabilities
P(µ - 2.5mm < Ybar < µ + 2.5mm)
P(µ - 3.75mm < Ybar < µ + 1.25mm)
Solution
a)
Note that the mean of Ybar - u = 0.
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    -2.5      
 x2 = upper bound =    2.5      
 u = mean =    0      
 n = sample size =    64      
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -2      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    2      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.022750132      
 P(z < z2) =    0.977249868      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.954499736   [ANSWER]
*******************
b)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    -3.75      
 x2 = upper bound =    1.25      
 u = mean =    0      
 n = sample size =    64      
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -3      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    1      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.001349898      
 P(z < z2) =    0.841344746      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.839994848   [ANSWER]  
   

