Find the slope of the line tangent to the curve rcos2 theta

Find the slope of the line tangent to the curve r=cos(2 theta + 1) (i.e., dy/dx)

Solution

r = cos(2 + 1), r\' = dr/d = -2sin(2 + 1)

y = rsin, dy = dr sin + rcos d = (r\'sin + rcos) d = [-2sin(2 + 1) sin + cos(2 + 1) cos] d

x = rcos, dx = dr cos - rsin d = (r\'cos - rsin) d = [-2sin(2 + 1) cos - cos(2 + 1) sin]d

so sy/dx = [2sin(2 + 1) sin - cos(2 + 1) cos]/[2sin(2 + 1) cos + cos(2 + 1) sin]

Find the slope of the line tangent to the curve r=cos(2 theta + 1) (i.e., dy/dx) Solutionr = cos(2 + 1), r\' = dr/d = -2sin(2 + 1) y = rsin, dy = dr sin + rcos

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site