Find the inverse of fx 3x 12x 5 Find domain and range of f
Solution
f(x) = (3x + 1)/(2x - 5)
Domain :
f(x) is undefined when denominator is zero
==> 2x -5 = 0
==> x = 5/2
Hence Domain is (- , 5/2) U (5/2 , )
Range:
lim [x -> ] f(x) = lim [x -> ] (3x + 1)/(2x - 5)
==> 3/2
Hence range is (- , 3/2) U (3/2 , )
let f(x) = y ==> x = f-1(y)
==> (3x + 1)/(2x - 5) = y
==> 3x + 1 = y(2x - 5)
==> 3x + 1 = 2xy - 5y
==> 2xy - 3x = 5y + 1
==> x(2y - 3) = 5y + 1
==> x = (5y + 1)/(2y - 3)
==> f -1(y) = (5y + 1)/(2y - 3)
==> f -1(x) = (5x + 1)/(2x - 3)
Hence Inverse of f(x) = (3x + 1)/(2x - 5) is f -1(x) = (5x + 1)/(2x - 3)
Domain :
f -1(x) is undefined when denominator is zero
==> 2x -3= 0
==> x = 3/2
Hence Domain is (- , 3/2) U (3/2 , )
Range :
lim [x -> -] f -1(x) = lim [x -> -] (5x + 1)/(2x - 3) = 5/2
Hence Range of f -1(x) is (- , 5/2) U (5/2 , )
