The weekly revenue for a product is given by Rx3762x0036x2 a
The weekly revenue for a product is given by R(x)=376.2x-0.036x2, and the weekly cost is C(x)=9000+188.1x-0.072x2+0.00003x3, where x is the number of units produced and sold.
A. How many units will give the maximum profit?
B. What is the maximum possible profit?
Solution
P(x)=R(x)-C(x)=376.2x-0.036x2 -(9000+188.1x-0.072x2+0.00003x3)
To maximize the profit lets find x for dP/dx=0
376.2-.072x-188.1+.144x-.00009x2 =0
9x2 -7200x-18810000=0
x2 -800x-2090000=0
x=1900,-1100
d2p/dx2 =.072-.00018x=T
If T>0 minima T<0 maxima
at x=1900 T=-.27
at x=-1100 T=.27
A.1900 units
B.376.2*1900-0.036*19002 -(9000+188.1*1900-0.072*19002+0.00003*19003) = 272580
