Solve for x given that lnxlnx2ln8 a x2x4 b x2x4 c x4 d x2 e
Solve for x, given that ln(x)+ln(x+2)=ln(8).
a) x=2,x=4
b) x=2,x=4
c) x=4
d) x=2
e) x=2,x=4
f) None of the above.
Solution
ln(x ) + ln(x +2) = ln 8
use the log property : lnA +lnB = ln(A*B)
So, ln(x(x+2) = ln8
euqte the arguments:
x(x+2) = 8
x^2 +2x -8 =0
x^2 +4x -2x -8 =0
x(x+4) -2(x+4) =0
(x-2)(x+4) =0
x = 2 , -4
Option b
