n Use the previous part to prove Markovs inequality PxGEkLE

n

Use the previous part to prove Markov\'s inequality: P(xGEk)LE muX/K Let Y be any random variable with mean muy and variance sigma ^2y. Let X = (Y - muy^2). Show that uX= sigma ^2y. Let X be a continuous random variable with probability density function f(x). Suppose that P(X LT 0) = 0, so f(x) = 0 for x 0. You must show all your work to receive any credit. Show that muX= Itegrateinfinity0 x f(x)dx Let k GT 0 be a constant. Show that muXGEintegrateinfinityk k f(x)dx=kP(XGEk)

Solution

n Use the previous part to prove Markov\'s inequality: P(xGEk)LE muX/K Let Y be any random variable with mean muy and variance sigma ^2y. Let X = (Y - muy^2). S

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site