Average talk time between charges of a cell phone is adverti
Average talk time between charges of a cell phone is advertised as 4.3 hours. Assume that talk time is normally distributed with a standard deviation of 1.2 hour. a. Find the probability that talk time between charges for a randomly selected cell phone is below 3.1 hours. (Round \"z\" value to 2 decimal places and final answer to 4 decimal places.) b. Find the probability that talk time between charges for a randomly selected cell phone is either more than 5 hours or below 1.9 hours. (Round \"z\" value to 2 decimal places and final answer to 4 decimal places.) c. Fifty percent of the time, talk time between charges is below a particular value. What is this value? (Round \"z\" value to 2 decimal places and final answer to 3 decimal places.)
Solution
a)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    3.1      
 u = mean =    4.3      
           
 s = standard deviation =    1.2      
           
 Thus,          
           
 z = (x - u) / s =    -1      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -1   ) =    0.158655254 [ANSWER]
*****************
b)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    1.9      
 x2 = upper bound =    5      
 u = mean =    4.3      
           
 s = standard deviation =    1.2      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2      
 z2 = upper z score = (x2 - u) / s =    0.583333333      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.022750132      
 P(z < z2) =    0.720165536      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.697415404      
Thus, those outside this interval is the complement = 0.302584596 [ANSWER]
*********************
c)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.5      
           
 Then, using table or technology,          
           
 z =    0      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    4.3      
 z = the critical z score =    0      
 s = standard deviation =    1.2      
           
 Then          
           
 x = critical value =    4.3   [ANSWER]  
   


