log56x7 log5x1 solved exponential formSolutionlog56x7 log5
log5(6x-7) + log5x=1 solved exponential form
Solution
log5(6x-7) + log5x=1
Using The log Property : logA + logB = log(A*B)
So, log5( 6x -7)x =1
Now using the exponential property : logax = b ----> x = a^b
(6x -7)x = 5^1
6x^2 -7x -5 =0
Solving using quadratice root formula: x = ( 7 + /- sqrt( 49+120) )/12
= 7/12 + /- 13/12
x = 20/12 = 5/3 ; x = -4/12 = -1/3
Neglect x= -1/3 as -ve number is not in the domain of log function
Solution : x = 5/3
