A candy maker produces bags of mints that have an advertised
A candy maker produces bags of mints that have an advertised weight of 20.4 ounces. Assume the distribution of mint bag weights are normally distributed with a mean of 21.87 ounces and a standard deviation of 0.40 ounces.
d) Of bags that weigh at least 21.50 ounces, what is the probability that a bag weighs at most 22.50 ounces?
e) Given a bag weighs between 21.32 and 22.82 ounces, what is the probability that a bag weighs exactly 21.99 ounces?
Solution
d)
For P(x>21.50):
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    21.5      
 u = mean =    21.87      
           
 s = standard deviation =    0.4      
           
 Thus,          
           
 z = (x - u) / s =    -0.925      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -0.925   ) =    0.822517046
For P(21.50<x<22.50):
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    21.5      
 x2 = upper bound =    22.5      
 u = mean =    21.87      
           
 s = standard deviation =    0.4      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.925      
 z2 = upper z score = (x2 - u) / s =    1.575      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.177482954      
 P(z < z2) =    0.942371778      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.764888824      
Thus,
P(x<22.50 | x > 21.50) = P(21.50<x<22.50)/P(x>21.50)
= 0.764888824/0.822517046
= 0.929936744 [ANSWER]
**********************************************
e)
The probability that a bag weighs EXACTLY 21.99 OZ is 0. [ANSWER]
This is because we need an interval to get a positive probability. If we have just a point, we have 0 probability.
*******************************************
Hi! If you use a special method in part e), please resubmit this question together with the method itself. That way we can continue helping you! Thanks!


