Write the partial fraction decomposition of the rational exp
Write the partial fraction decomposition of the rational expression. Check your result algebraically.
2x^2 8x + 12 / (x + 3)(x2 2x + 3)
Solution
(2x^2 8x + 12) / (x + 3)(x2 2x + 3)
This cannot be factorised further:
If i take the expression : -2x^2 -8x +12/(x^2 -2x +3)
: -2x^2 -8x +12/(x^2 -2x +3) = -2x^2 -8x +12/(x^2 -2x +3)(x+3)
So, 12/(x^2 -2x +3)(x+3) = (a+bx)/(x^2 -2x +3) + c/(x+3)
12 = (x+bx)(x+3) + x(x^2 -2x +3)
Multiplying the terms on RHS and equating with coefficients on LHS
3a+2 =12 ;
a+3b -4/3 =0
a +2/3 =0
On solving we get c = 2/3 ; a = 10/3 ; b=-2/3
So, 12/(x^2 -2x +3)(x+3) = (a+bx)/(x^2 -2x +3) + c/(x+3)
= (10/3 -2x/3)/(x^2 -2x +3) +2/3(x+3)
= 10-2x/3(x^2 -2x +3) +2/3(x+3)
Factorised form : -2x^2 -8x +12/(x^2 -2x +3) = -2x^2 - 8x + (10-2x)/3(x^2 -2x +3) +2/3(x+3)
if we again add the terms of RHs we would get back to LHS

