The college is planning to add a food vender in the student
The college is planning to add a food vender in the student union and would like to know what type of food service the students would prefer. A sample of 120 students is obtained and each student is asked to select his/her preference from a coffee shop, a pizza place, or a hamburger grill. The resulting frequency data are as follows:
 i. Coffee= 53 Pizza = 37 Hamburger = 30
 
 b. Do the data indicate any significant preferences among the three types of food service? Test at the .05 level of significance.
c. A similar survey of the student population ten years ago found that a coffee shop was preferred by 20% of the students and pizza and hamburger were each preferred by 40% of the students. Do the data indicate a significant change in preferences during the past ten years. State the hypotheses and find the expected frequencies for the chi-square test.
Solution
B)
Doing an observed/expected value table,          
 O   E   (O - E)^2/E  
 53   33.33333333   11.60333333  
 37   33.33333333   0.403333333  
 30   33.33333333   0.333333333  
          
 Using chi^2 = Sum[(O - E)^2/E],          
           
 chi^2 =    12.34      
           
 As df = a - 1,           
           
 a =    3      
 df = a - 1 =    2      
           
 Then, the critical chi^2 value is          
           
 significance level =    0.05      
 chi^2(crit) =    5.991464547      
           
 Also, the p value is          
           
 p =    0.002091236      
           
 Thus, comparing chi^2 and chi^2(crit) [or, p and significance level], we   REJECT THE NULL HYPOTHESIS.      
           
 Thus, there is significant evidence that there are significant preferences among the three types of food service.
****************************
c)
Doing an observed/expected value table,          
 O   E   (O - E)^2/E  
 53   24   35.04166667  
 37   48   2.520833333  
 30   48   6.75  
           
 Using chi^2 = Sum[(O - E)^2/E],          
           
 chi^2 =    44.3125      
           
 As df = a - 1,           
           
 a =    3      
 df = a - 1 =    2      
           
 Then, the critical chi^2 value is          
           
 significance level =    0.05      
 chi^2(crit) =    5.991464547      
           
 Also, the p value is          
           
 p =    2.38596E-10      
           
 Thus, comparing chi^2 and chi^2(crit) [or, p and significance level], we   REJECT THE NULL HYPOTHESIS.      
           
 Thus, there is significant evidence that there is a significant change in preferences during the past ten years.
*****************************


