1 A stock has an annual return of 11 percent and a standard
1. A stock has an annual return of 11 percent and a standard deviation of 44 percent. What is the smallest expected loss over the next year with a probability of 1 percent? (Negative value should be indicated by a minus sign. Do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places. Omit the \"%\" sign in your response.)
Smallest expected loss _________%
2. A stock has an annual return of 11.6 percent and a standard deviation of 47 percent. What is the smallest expected gain over the next year with a probability of 1 percent? (Do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places. Omit the \"%\" sign in your response.)
| 1. A stock has an annual return of 11 percent and a standard deviation of 44 percent. What is the smallest expected loss over the next year with a probability of 1 percent? (Negative value should be indicated by a minus sign. Do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places. Omit the \"%\" sign in your response.) 
 | 
Solution
1.
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.01      
           
 Then, using table or technology,          
           
 z =    -2.326347874      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    11      
 z = the critical z score =    -2.326347874      
 s = standard deviation =    44      
           
 Then          
           
 x = critical value =    -91.35930646% = -91.36% [ANSWER]
***********************
2.
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.99      
           
 Then, using table or technology,          
           
 z =    2.326347874      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    11.6      
 z = the critical z score =    2.326347874      
 s = standard deviation =    47      
           
 Then          
           
 x = critical value =    120.9383501 = 120.94% [ANSWER]      
       


