Use de Moivres theorem to evaluate 34i7 Express the results
Use de Moivre\'s theorem to evaluate (3+4i)^7. Express the results in trigonometric form
Solution
(3+ 4i)7
r =(32+42)=5
=(5((3/5)+ (4/5)i))7
=57((3/5)+ (4/5)i)7
=57(cos(cos-1(3/5))+ sin(cos-1(3/5))i)7
=57(cos(7cos-1(3/5))+ sin(7cos-1(3/5))i)
