To estimate the average monthly rent for 1 bedroom apartment
To estimate the average monthly rent for 1 bedroom apartments, 14 complexes were randomly selected in Orlando. The mean cost of the selected complexes is $995 with a standard devaition of $97.
1. If the confidence level was decreased to 90% of 1 bedroom apartments, what would happen to the width of the interval? (What is the relationship between the confidence level and interval width)
Solution
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    995          
 t(alpha/2) = critical t for the confidence interval =    1.770933396          
 s = sample standard deviation =    97          
 n = sample size =    14          
 df = n - 1 =    13          
 Thus,              
               
 Lower bound =    949.0897197          
 Upper bound =    1040.91028          
               
 Thus, the confidence interval is              
               
 (   949.0897197   ,   1040.91028   ) [ANSWER]
which is narrower than the 98% confidence interval.
*************************
As confidence level increases, the width increases. [ANSWER]

