For the data given assume a model of the form Ey 0 1x1 2x
For the data given, assume a model of the form:
E(y) = 0 + 1x1 + 2x2
A. Determine the least-squares multiple regression line.
B. What is the estimate of the standard deviation of the random error component () for this model and data?
C. Do you conclude that y increases with x1? Report the observed significance level and reach a conclusion using alpha = 0.05.
D. Find and interpret a 95% confidence interval for 2.
E. Test the overall adequacy of the model using alpha = 0.05.
| Y | X1 | X2 |
| 784.8257 | 68 | 35 |
| 832.2564 | 74 | 58 |
| 457.274 | 29 | 1 |
| 622.3054 | 66 | 7 |
| 1068.034 | 92 | 92 |
| 1013.204 | 96 | 86 |
| 975.2825 | 59 | 96 |
| 707.0658 | 21 | 49 |
| 990.8516 | 96 | 92 |
| 857.9062 | 22 | 91 |
| 1045.494 | 92 | 73 |
| 421.9679 | 22 | 7 |
| 899.7724 | 51 | 97 |
| 1011.525 | 78 | 89 |
| 857.4823 | 57 | 74 |
| 574.037 | 2 | 35 |
| 577.6635 | 48 | 13 |
| 845.1017 | 32 | 66 |
| 863.1371 | 53 | 70 |
| 512.2653 | 48 | 3 |
| 1009.984 | 77 | 77 |
| 890.2632 | 57 | 55 |
| 948.3247 | 41 | 89 |
| 534.5611 | 6 | 26 |
| 460.8648 | 40 | 16 |
| 956.7324 | 42 | 97 |
| 468.6994 | 15 | 13 |
| 980.1208 | 94 | 69 |
| 459.821 | 3 | 16 |
| 724.015 | 28 | 49 |
| 686.9348 | 74 | 18 |
| 688.8944 | 27 | 38 |
| 796.2529 | 6 | 77 |
| 787.348 | 34 | 48 |
| 636.1797 | 60 | 24 |
| 597.4661 | 63 | 1 |
| 518.3151 | 50 | 10 |
| 703.3804 | 49 | 31 |
| 561.2966 | 21 | 25 |
| 484.9851 | 36 | 17 |
| 604.0478 | 6 | 31 |
| 821.5822 | 11 | 72 |
| 781.0709 | 36 | 70 |
| 457.4413 | 1 | 6 |
| 809.7184 | 93 | 40 |
| 715.6285 | 57 | 36 |
| 709.3787 | 46 | 31 |
| 931.6842 | 83 | 68 |
| 984.7514 | 15 | 98 |
Solution

