Use integration by parts to find the integral of exsinxdxSol
Use integration by parts to find the integral of (e^x)(sinx)dx
Solution
I = ex sinx dx
I = ex (sinx) - [ ex cosx ] dx
I = ex (sinx) - [ ex cosx + [ ex sinx ] dx ]
I = ex (sinx) - [ ex cosx] - I
2I = ex (sinx) - [ ex cosx]
I = (1/2) [ ex sinx - ex cosx ]
answer !!
![Use integration by parts to find the integral of (e^x)(sinx)dxSolutionI = ex sinx dx I = ex (sinx) - [ ex cosx ] dx I = ex (sinx) - [ ex cosx + [ ex sinx ] dx ] Use integration by parts to find the integral of (e^x)(sinx)dxSolutionI = ex sinx dx I = ex (sinx) - [ ex cosx ] dx I = ex (sinx) - [ ex cosx + [ ex sinx ] dx ]](/WebImages/10/use-integration-by-parts-to-find-the-integral-of-exsinxdxsol-1003613-1761517178-0.webp)
