Find all solutions of the equation in the interval 0 2 Enter
Find all solutions of the equation in the interval [0, 2). (Enter your answers as a comma-separated list.)
cos(x+(3pi)/4)-cos(x-(3pi)/4)=1
Use a graphing utility to approximate the solutions of the equation in the interval [0, 2). (Enter your answers as a comma-separated list. Round your answers to four decimal places.)
sin ( x + / 2 ) + cos^2 x = 0
Solution
cos(x+(3pi)/4)=cos(x).cos((3pi)/4)-sin(x)sin((3pi/4))
 cos(x-(3pi)/4)=cos(x).cos((3pi)/4)+sin(3pi/4)(sinx)
 
 cos(x+(3pi)/4)-cos(x-(3pi)/4)=cos(x).cos((3pi)/4)-sin(x)sin((3pi/4))-(cos(x).cos((3pi)/4)+sin(3pi/4)(sinx))
cos(x).cos((3pi)/4)-sin(x)sin((3pi/4))-cos(x).cos((3pi)/4) -sin(3pi/4)(sinx)
 -2sin(x).sin((3pi)/4)=1
sinx(sin(3pi/4)=-1/2
sinx (1/sqrt(2)) =-1/2
sinx =-1/sqrt(2)
x=5pi/4 and x=7pi/4

