Find the solution to ut uxx u u0 t u1 t 0 ux 0 3 sinpix
Find the solution to u_t = u_xx + u, u(0, t) = u(1, t) = 0, u(x, 0) = 3 sin(pix) + sin(2pix).
Solution
Let ut = uxx+u =k where k is a constant
Consider ut =k
U(t) = kt +C
----------------------------
Next consider uxx+u = k
Auxialary equation has solution as i and -i
Hence solution is
U(x) = A cos x + B sin x
Hence general solution for U is
U(x,t) = (kt +C)(A cos x + B sin x)
Now substitute initial conditions:
u(1,t) = (kt+c) (-A) = 0
u(0,t) = (kt+C)(A)=0
It follows that A =0
---------------------------------------
u(x,0) = (+C)(Bsin x) = 3 sin pix + sin 2pix
BC sin 3x= (3 sin pix+sin 2pix)
Hence solution is
U(X,t) = kBt sin x +(3 sin pix+sin 2pix)(sinx)/sin3x
