Solve using quadratic methods x4 8x2 15 0Solutiongiven x4
Solution
given
x^4 -8x^2 +15 =0
plug x= sqrt(3)
then we get
[sqrt(3) ]^4 - 8[sqrt(3)]^2 +15=0
9 - 8(3) +15=0
24 -24=0
0 =0
so sqrt(3) is a root of (x^4 -8x^2 +15 =0)
similerly if we plug x= -sqrt(3) also we get 0 =0
so sqrt(3) and -sqr(3) are roots of x^4 -8x^2 +15=0
so can be written as (x^2-3) (x^2 -5)
so (x^2 -3) (x^2 -5) =0
so roots are -sqrt(3) , sqrt(3) , sqrt(5) and -sqrt(5)
x^4 -8x^2 +15 =0 can be written as
[x- sqrt(3) ] [ x+ sqrt(3) ] [x -sqrt(5) ] [x +sqrt(5) ]=0
![Solve using quadratic methods: x^4 - 8x^2 + 15 = 0Solutiongiven x^4 -8x^2 +15 =0 plug x= sqrt(3) then we get [sqrt(3) ]^4 - 8[sqrt(3)]^2 +15=0 9 - 8(3) +15=0 2 Solve using quadratic methods: x^4 - 8x^2 + 15 = 0Solutiongiven x^4 -8x^2 +15 =0 plug x= sqrt(3) then we get [sqrt(3) ]^4 - 8[sqrt(3)]^2 +15=0 9 - 8(3) +15=0 2](/WebImages/10/solve-using-quadratic-methods-x4-8x2-15-0solutiongiven-x4-1004368-1761517614-0.webp)