23 How heavy a load pounds is needed to pull apart pieces of
23. How heavy a load (pounds) is needed to pull apart pieces of wood 4 inches long and 1.5 inches square? Here are data from students doing a laboratory exercise.
We are willing to regard the wood pieces prepared for the lab session as an SRS of all similar pieces of wood. Engineers also commonly assume that characteristics of materials vary Normally. Suppose that the strength of pieces of wood like these follows a Normal distribution with standard deviation 3000 pounds.
(a) Is there statistically significant evidence at the = 0.10 level against the hypothesis that the mean is 32,500 pounds for the two-sided alternative?
H0:  = 32,500
 Ha:   32,500
What is the value of the test statistic. (Round your answer to two decimal places.)
z=______
What is the P-value of the test? (Round your answer to four decimal places.)
Pvalue =______
(b) Is there statistically significant evidence at the = 0.10 level against the hypothesis that the mean is 31,500 pounds for the two-sided alternative?
What is the value of the test statistic. (Round your answer to two decimal places.)
z= _____
What is the P-value of the test? (Round your answer to four decimal places.)
p = __________
You may need to use the appropriate Appendix Table to answer this question. http://www.webassign.net/mbasicstat6/appendix-tables.pdf
| 33,220 | 31,910 | 32,620 | 26,540 | 33,330 | 
| 32,300 | 33,020 | 32,030 | 30,410 | 32,720 | 
| 23,060 | 30,950 | 32,770 | 33,660 | 32,310 | 
| 24,070 | 30,150 | 31,250 | 28,680 | 31,910 | 
Solution
a)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   =   32500  
 Ha:    u   =/   32500  
               
 As we can see, this is a    two   tailed test.      
               
               
 Getting the test statistic, as              
               
 X = sample mean =    30845.5          
 uo = hypothesized mean =    32500          
 n = sample size =    20          
 s = standard deviation =    3000          
               
 Thus, z = (X - uo) * sqrt(n) / s =    -2.466382979 [ANSWER, TEST STATISTIC]
********************          
               
 Also, the p value is, as it is two tailed,              
               
 p =    0.013648532   [ANSWER, P VALUE]
*******************      
               
 Thus, as P < 0.10, there is statistically significant evidence at the  = 0.10 level against the hypothesis that the mean is 32,500 pounds. [CONCLUSION]
********************************
b)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   =   31500  
 Ha:    u   =/   31500  
               
 As we can see, this is a    two   tailed test.      
               
               
 Getting the test statistic, as              
               
 X = sample mean =    30845.5          
 uo = hypothesized mean =    31500          
 n = sample size =    20          
 s = standard deviation =    3000          
               
 Thus, z = (X - uo) * sqrt(n) / s =    -0.975670994 [ANSWER, TEST STATISTIC]          
               
 Also, the p value is              
               
 p =    0.329227531   [ANSWER, P VALUE]      
               
Thus, as P > 0.10, there is no statistically significant evidence at the  = 0.10 level against the hypothesis that the mean is 32,500 pounds. [CONCLUSION]      
               


