Determine if the plane 112 is perpendicular to the following
Solution
Two Miller planes with miller indices : [h_{1},k_{1},l_{1}] and [h_{2},k_{2},l_{2}] are said to be perpendicular if the angle (\\phi) between the two planes is 90^{\\degree} i.e. \\cos{\\phi}=0. The angle between any two planes is obtained using the relation - \\cos{\\phi}=\\frac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} 1. We are given - [h_{1},k_{1},l_{1}]=[1 1 2]\\Rightarrow h_{1}=1,k_{1}=1,l_{1}=2\\\\\\\\ \\therefore \\hspace{0.2cm} \\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}=\\sqrt{6} If [h_{2},k_{2},l_{2}]=[1 0 0]\\Rightarrow h_{2}=1,k_{2}=0,l_{2}=0\\\\\\\\ \\therefore \\hspace{0.2cm} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=1 therefore, \\cos{\\phi}=\\frac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =\\frac{1+0+0}{\\sqrt{6}}=\\frac{1}{\\sqrt{6}} This implies, Miller plane [1 1 2] is not perpendicular to [1 0 0]. If [h_{2},k_{2},l_{2}]=[0 0 1]\\Rightarrow h_{2}=0,k_{2}=0,l_{2}=1\\\\\\\\ \\therefore \\hspace{0.2cm} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=1 therefore, \\cos{\\phi}=\\frac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =\\frac{0+0+2}{\\sqrt{6}}=\\frac{2}{\\sqrt{6}} This implies, Miller plane [1 1 2] is not perpendicular to [0 0 1]. If [h_{2},k_{2},l_{2}]=[\\bar{2} 1 1]\\Rightarrow h_{2}=-2,k_{2}=1,l_{2}=1\\\\\\\\ \\therefore \\hspace{0.2cm} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=\\sqrt{6} therefore, \\cos{\\phi}=\\frac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =\\frac{-2+1+2}{\\sqrt{6}\\sqrt{6}}= \\frac{1}{6} This implies, Miller plane [1 1 2] is not perpendicular to [\\bar{2},\\textbf{1,1}]. If [h_{2},k_{2},l_{2}]=[\\bar{1} \\bar{1} 0]\\Rightarrow h_{2}=-1,k_{2}=-1,l_{2}=0\\\\\\\\ \\therefore \\hspace{0.2cm} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=2 therefore, \\cos{\\phi}=\\frac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =\\frac{-1-1+0}{\\sqrt{6}\\sqrt{2}}=-\\frac{2}{\\sqrt{6}\\sqrt{2}} This implies, Miller plane [1 1 2] is not perpendicular to [\\bar{1},\\bar{1},\\textbf{0}]. 2. The interplanar distance between two planes with indices : [h_{1},k_{1},l_{1}] and [h_{2},k_{2},l_{2}] for a cubic lattice with lattice constant (a) is written as - d_{2}-d_{1}=\\Delta d=a\\left [ \\frac{1}{\\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}}- \\frac{1}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}} \ ight ] Thus, if [h_{1},k_{1},l_{1}]=[1 2 3] and [h_{2},k_{2},l_{2}]=[3 2 1] such that \\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}=\\sqrt{1+4+9}=\\sqrt{14} and \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=\\sqrt{9+4+1}=\\sqrt{14} Thus, interplanar distance between these two planes are - \\Delta d=a\\left [ \\frac{1}{\\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}}- \\frac{1}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}} \ ight ] =a\\left [ \\frac{1}{\\sqrt{14}}- \\frac{1}{\\sqrt{14}} \ ight ] =0 and, the angle at which these two planes cross each other is - \\cos{\\phi}=\\frac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{\\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} \\sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =\\frac{3+4+3}{\\sqrt{14}\\sqrt{14}} =\\frac{10}{14}=\\frac{5}{7} This gives us - \\phi=\\cos^{-1}{\\frac{5}{7}}=44.415^{\\degree}
![Determine if the plane (112) is perpendicular to the following directions:[100], [001], [2bar11], and [1bar 1bar 0]. For cubic lattice, calculate inter-planer Determine if the plane (112) is perpendicular to the following directions:[100], [001], [2bar11], and [1bar 1bar 0]. For cubic lattice, calculate inter-planer](/WebImages/10/determine-if-the-plane-112-is-perpendicular-to-the-following-1004590-1761517740-0.webp)