Let X be normally distributed with mean mu 102 and standard

Let X be normally distributed with mean mu = 102 and standard deviation sigma = 34. Use Table 1. Find P(X

Solution

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    100      
u = mean =    102      
          
s = standard deviation =    34      
          
Thus,          
          
z = (x - u) / s =    -0.06      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.06   ) =    0.476077817 [ANSWER]

*****************

b)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    95      
x2 = upper bound =    110      
u = mean =    102      
          
s = standard deviation =    34      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.21      
z2 = upper z score = (x2 - u) / s =    0.24      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.416833837      
P(z < z2) =    0.594834872      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.178001035   [ANSWER]

**********************

c)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.063      
          
Then, using table or technology,          
          
z =    -1.530067588      
          
As x = u + z * s,          
          
where          
          
u = mean =    102      
z = the critical z score =    -1.53      
s = standard deviation =    34      
          
Then          
          
x = critical value =    49.98   [ANSWER]

*************************

D)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.648      
          
Then, using table or technology,          
          
z =    0.379926467      
          
As x = u + z * s,          
          
where          
          
u = mean =    102      
z = the critical z score =    0.38      
s = standard deviation =    34      
          
Then          
          
x = critical value =    114.92   [ANSWER]  
  
  

 Let X be normally distributed with mean mu = 102 and standard deviation sigma = 34. Use Table 1. Find P(X SolutionA) We first get the z score for the critical
 Let X be normally distributed with mean mu = 102 and standard deviation sigma = 34. Use Table 1. Find P(X SolutionA) We first get the z score for the critical

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site