Determine the power for the following test of hypothesis H0
Determine the power for the following test of hypothesis.
H0 : = 950 vs. H1 : 950, given that = 1,000, = 0.10, = 200, and n = 25.
A. 0.4938
B. 0.3465
C. 0.6535
D. 0.5062
Answer \"A\" is incorrect.
Solution
First, we get the z score from the given left tailed area. As
The left tailed area of the right endpoint of the test is 0.95.          
           
 Left tailed area =    0.95      
           
 Then, using table or technology,          
           
 z =    1.644853627      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    950      
 z = the critical z score =    1.644853627      
 s = standard deviation =    200      
 n = sample size =    25      
 Then          
           
 x = critical value =    1015.794145
This is the right critical value for the hypothesis test. Now, for the probability of getting a value farther (right tailed area):
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    1015.794145      
 u = mean =    1000      
 n = sample size =    25      
 s = standard deviation =    200      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    0.394853625      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.394853625   ) =    0.346475458 = 0.3465 [ANSWER, B]

