suppose x is a normally distributed random variable with mea
suppose x is a normally distributed random variable with mean 16 and Standard D 2. Find each of the following probabilities.
Solution
A)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    19      
 u = mean =    16      
           
 s = standard deviation =    2      
           
 Thus,          
           
 z = (x - u) / s =    1.5      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.5   ) =    0.066807201 [ANSWER]
********************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    15.5      
 u = mean =    16      
           
 s = standard deviation =    2      
           
 Thus,          
           
 z = (x - u) / s =    -0.25      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -0.25   ) =    0.401293674 [ANSWER]
*************************
c)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    17.52      
 x2 = upper bound =    20.86      
 u = mean =    16      
           
 s = standard deviation =    2      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    0.76      
 z2 = upper z score = (x2 - u) / s =    2.43      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.776372708      
 P(z < z2) =    0.992450589      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.216077881   [ANSWER]
********************
d)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    11.5      
 x2 = upper bound =    19.54      
 u = mean =    16      
           
 s = standard deviation =    2      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2.25      
 z2 = upper z score = (x2 - u) / s =    1.77      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.012224473      
 P(z < z2) =    0.96163643      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.949411957   [ANSWER]  
   


