suppose x is a normally distributed random variable with mea

suppose x is a normally distributed random variable with mean 16 and Standard D 2. Find each of the following probabilities.

Solution

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    19      
u = mean =    16      
          
s = standard deviation =    2      
          
Thus,          
          
z = (x - u) / s =    1.5      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1.5   ) =    0.066807201 [ANSWER]

********************

b)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    15.5      
u = mean =    16      
          
s = standard deviation =    2      
          
Thus,          
          
z = (x - u) / s =    -0.25      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.25   ) =    0.401293674 [ANSWER]

*************************

c)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    17.52      
x2 = upper bound =    20.86      
u = mean =    16      
          
s = standard deviation =    2      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    0.76      
z2 = upper z score = (x2 - u) / s =    2.43      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.776372708      
P(z < z2) =    0.992450589      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.216077881   [ANSWER]

********************

d)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    11.5      
x2 = upper bound =    19.54      
u = mean =    16      
          
s = standard deviation =    2      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -2.25      
z2 = upper z score = (x2 - u) / s =    1.77      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.012224473      
P(z < z2) =    0.96163643      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.949411957   [ANSWER]  
  

suppose x is a normally distributed random variable with mean 16 and Standard D 2. Find each of the following probabilities.SolutionA) We first get the z score
suppose x is a normally distributed random variable with mean 16 and Standard D 2. Find each of the following probabilities.SolutionA) We first get the z score

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site