Use the oneproportion ztest and zinterval procedure to condu
Solution
2.
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.2          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.063245553          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.123959006          
 lower bound = p^ - z(alpha/2) * sp =   0.076040994          
 upper bound = p^ + z(alpha/2) * sp =    0.323959006          
               
 Thus, the confidence interval is              
               
 (   0.076040994   ,   0.323959006   ) [ANSWER]
*********************
b)
Formulating the null and alternatuve hypotheses,          
           
 Ho:   p   <=   0.65
 Ha:   p   >   0.65
 As we see, the hypothesized po =   0.65      
 Getting the point estimate of p, p^,          
           
 p^ = x / n =    0.7      
           
 Getting the standard error of p^, sp,          
           
 sp = sqrt[po (1 - po)/n] =    0.067453688      
           
 Getting the z statistic,          
           
 z = (p^ - po)/sp =    0.741249317      
           
 As this is a    1   tailed test, then, getting the p value,  
           
 p =    0.229271143      
 significance level =    0.1      
As P > 0.1, we FAIL TO REJECT THE NULL HYPOTHESIS.
There is no significant evidence that p > 0.65 at 0.10 level. [CONCLUSION]

