Diamond size is measured in carats For ladies diamond rings
Solution
a)
All ladies\' diamond rings
b)
Mean size of all ladies\' diamond rings
c)
a random sample of 36 ladies diamond rings
d)
Xbar = 0.203 carats
e)
As n > 30, and the sample is a simple random sample, then we have a normal sampling distirbution.
f)
It has a mean of 0.2 carats, and standard deviaiton of
s(Xbar) = s/sqrt(n) = 0.057/sqrt(36) = 0.0095 [ANSWER]
*************************
g)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    0.202      
 x2 = upper bound =    0.204      
 u = mean =    0.2      
 n = sample size =    36      
 s = standard deviation =    0.057      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    0.210526316      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    0.421052632      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.583371543      
 P(z < z2) =    0.663141675      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.079770133   [ANSWER]  

