Prove the following identity using basic pythagorean sum and
Prove the following identity using basic, pythagorean, sum and difference or double/half angle identites. Show your work.
1-8sin2xcos2x=cos4x
Solution
Remember that cos(2x) = cos2(x) - sin2(x) = 2 cos2(x) - 1 = 1 - 2 sin2(x)
Sin2x=2sinxcosx
lets start with right hand side
cos(4x) = cos(2*2x)
1 - 2sin²(2x)
1 - 2[sin(2x)]²
1 - 2[2sin(x)cos(x)]²
1 - 2*4sin²(x)cos²(x)
1 - 8sin²(x)cos²(x) = left hand side
Hence proved
