A researcher would like to estimate p the proportion of US a
A researcher would like to estimate p, the proportion of U.S. adults who support recognizing civil unions between gay or lesbian couples. Due to a limited budget, the researcher obtained opinions from a random sample of only 1,000 U.S. adults.With this sample size, the researcher can be 95% confident that the obtained sample proportion will differ from the true proportion (p) by no more than which of the following percentages (answers are rounded)?
Solution
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.5          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.015811388          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
Margin of error = z(alpha/2)*sp = 0.030989752
****************************************************
Thus, your answer, must be GREATER THAN 0.03099 or 3.099% [ANSWER]
Please choose the option that satisfies the condition above.

