Prove that the function fx 1 if 0 lessthanorequalto x Solut

Prove that the function f(x) = {-1, if 0 lessthanorequalto x

Solution

Given that

f(x) = -1 for 0<= x < 1/3

f(x) = 0 for 1/3 <= x < 2/3

   f(x) =1 for 2/3 <= x <= 1

f be bounded funtion on [0,1]

let p = {0=x0<x1<x2<x3=1} be partition on [0,1]

here x0 =0, x1 =1/3, x2=2/3, x3=1

let mi , Mi   are infimum and suprimum of f on [xi-1, xi]

m1= infimum of f on [0, 1/3] = -1

m2= infimum of f on [1/3, 2/3] = 0

m3 = infimum of f on [2/3, 1] =1

lower reman sum= Sp(f)= m1 (x1-x0) + m2 (x2-x1) + m3 (x3-x2)

   =-1 (1/3 -0) + 0 (2/3 -1/3) + 1 (1- 2/3)

   =-1/3 + 1/3

   =0

lower reman integral = sup(Sp(f))

= sup(0)

   =0

M1 = supremum of f on [0,1/3] =-1

M2 = supremum of f on [1/3, 2/3] = 0

M3 = supremum of f on [2/3, 1] = 1

Ip(f) =M1 (x1-x0) + M2 (x2-x1) + M3 (x3-x2)

=-1 (1/3 - 0) + 0 (2/3-1/3) + 1 (1- 2/3)

   =-1/3 +1/3

=0

Upper reman intigral = Inf(Ip(f))

   =Inf(0)

   =0

lower reman integral = upper reman integral

so , f(x) is reman integrable on [0,1]

     

 Prove that the function f(x) = {-1, if 0 lessthanorequalto x SolutionGiven that f(x) = -1 for 0<= x < 1/3 f(x) = 0 for 1/3 <= x < 2/3 f(x) =1 for 2
 Prove that the function f(x) = {-1, if 0 lessthanorequalto x SolutionGiven that f(x) = -1 for 0<= x < 1/3 f(x) = 0 for 1/3 <= x < 2/3 f(x) =1 for 2

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site