Blood type AB is found in only 3 of the population If 170 pe
Blood type AB is found in only 3% of the population†. If 170 people are chosen at random, find the probability of the following. (Use the normal approximation. Round your answers to four decimal places.)(a) 5 or more will have this blood type. (b) between 5 and 10 will have this blood type
Solution
Getting the mean standard deviation of this normal approximation,
u = n p = 5.1
s = sqrt(n p (1 - p)) = 2.224185
Thus, for 5 or more, the critical value is 4.5:
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    4.5      
 u = mean =    5.1      
 n = sample size =    1 (we treat the whole group as just 1 sample)      
 s = standard deviation =    2.224185      
           
 Thus,          
           
 z =    -0.269761733      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -0.269761733   ) =    0.606328218 [ANSWER]
******************************
b.
For between 5 and 10 inclusive, the bounds would be 4.5 to 10.5.
Thus, e first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    4.5      
 x2 = upper bound =    10.5      
 u = mean =    5.1      
 n = sample size =    1      
 s = standard deviation =    2.224185      
           
 Thus, the two z scores are          
           
 z1 = lower z score =    -0.269761733      
 z2 = upper z score =    2.427855597      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.393671782      
 P(z < z2) =    0.992405805      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.598734023 [ANSWER]

