A Google research study asked 5093 smartphone users about ho
Solution
1.
a)
Here,
p^ = 2654/5093 = 0.521107402
As
SE(p^) = sqrt(p^ (1-p^) / n) = sqrt(0.521107402*(1-0.521107402)/5093)
SE(p^) = 0.006999965 [ANSWER]
*************************
b)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.521107402          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.006999965          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.013719679          
 lower bound = p^ - z(alpha/2) * sp =   0.507387724          
 upper bound = p^ + z(alpha/2) * sp =    0.534827081          
               
 Thus, the confidence interval is              
               
 (   50.7387724%   ,   53.4827081%   ) [ANSWER]

