Is there statistically significant evidence that the distrib


Is there statistically significant evidence that the distribution of ratings is different for the 4 cars?

Can you use a X^2 test?

Car Good Bad OK Total
Honda 17 22 77 116
Toyota 3 23 64 90
Ford 4 18 31 53
Mazda 13 15 40 68
Total 37 78 212 327

Solution

Doing an Expected Value Chart,          
          
13.12538226   27.66972477   75.20489297  
10.18348624   21.46788991   58.34862385  
5.996941896   12.64220183   34.36085627  
7.694189602   16.22018349   44.08562691  
          
Using chi^2 = Sum[(O - E)^2/E],          
          
chi^2 =    15.46596829      
          
With df = (a - 1)(b - 1), where a and b are the number of categories of each variable,          
          
a =    3      
b =    4      
          
df =    6      
          
Thus, the critical value is          
          
significance level =    0.05      
          
chi^2(critical) =    12.59158724      
          
Also, the p value is          
          
P =    0.016926242      
          
As chi^2 > 12.5916, and P < 0.05, we   REJECT THE NULL HYPOTHESIS.      
          
Thus, there is a statistically significant evidence that the distribution of ratings is different for the 4 cars at 0.05 level. [CONCLUSION]

 Is there statistically significant evidence that the distribution of ratings is different for the 4 cars? Can you use a X^2 test? Car Good Bad OK Total Honda 1

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site