Find the function satisfying the differential equation y5y3e
Find the function satisfying the differential equation
y??5y=3e^(6t)
and y(0)=?2
Solution
y??5y=3e^6t
dy/dx - 5y = 3e^6t
so,
IF = e^int p(x) dx
IF = e^int (-5dx)
IF = e^(-5x)
y(IF) = int (IF * q(x) dx)
ye^(-5x) = int (e^(-5x) * 3e^(6x) dx)
ye^(-5x) = 3 int (e^x dx)
y e^(-5x) = 3e^x + c
y = 3e^6x + c*e^5x
y(0) = -2
-2 = 3*1+c*1
c = -5
So,
y = 3e^6x - 5*e^5x
