Verify the identity 1tan2x1cot2xcsc2xsec2xSolution1tan2x1cot

Verify the identity. 1/tan^2x-1/cot^2x=csc^2x-sec^2x

Solution

(1/tan2x)-(1/cot2x)

write tanx as sinx/cosx , cotx as cosx/sinx

=(1/(sinx/cosx)2)-(1/(cosx/sinx)2)

=(1/(sin2x/cos2x))-(1/(cos2x/sin2x))

=(cos2x/sin2x)-(sin2x/cos2x)

=(cos2x(1/sin2x))-(sin2x(1/cos2x))

=(cos2x(1/sinx)2)-(sin2x(1/cosx)2)

write sinx as 1/sinx as cscx , 1/cosx as secx

=(cos2x(cscx)2)-(sin2x(secx)2)

=(cos2xcsc2x)-(sin2xsec2x)

given identity is not true

(1/tan2x)-(1/cot2x)=(cos2xcsc2x)-(sin2xsec2x) is true

 Verify the identity. 1/tan^2x-1/cot^2x=csc^2x-sec^2xSolution(1/tan2x)-(1/cot2x) write tanx as sinx/cosx , cotx as cosx/sinx =(1/(sinx/cosx)2)-(1/(cosx/sinx)2)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site