Verify the identity 1tan2x1cot2xcsc2xsec2xSolution1tan2x1cot
Verify the identity. 1/tan^2x-1/cot^2x=csc^2x-sec^2x
Solution
(1/tan2x)-(1/cot2x)
write tanx as sinx/cosx , cotx as cosx/sinx
=(1/(sinx/cosx)2)-(1/(cosx/sinx)2)
=(1/(sin2x/cos2x))-(1/(cos2x/sin2x))
=(cos2x/sin2x)-(sin2x/cos2x)
=(cos2x(1/sin2x))-(sin2x(1/cos2x))
=(cos2x(1/sinx)2)-(sin2x(1/cosx)2)
write sinx as 1/sinx as cscx , 1/cosx as secx
=(cos2x(cscx)2)-(sin2x(secx)2)
=(cos2xcsc2x)-(sin2xsec2x)
given identity is not true
(1/tan2x)-(1/cot2x)=(cos2xcsc2x)-(sin2xsec2x) is true
