The manufacturer of a coffee dispensing machine claims the o
The manufacturer of a coffee dispensing machine claims the ounces per cup is mound-shaped and symmetric with mean u= 7 ounces and standard deviation o= 0.8 ounce. If 40 cups of coffee are measured, what is the probability the average ounces per cup x is:
a. u-x= and o-x=
b. less than 6.8 ounces? P( ) = P( ) = _______________
c. more than 7.4 ounces? P( ) = P( ) = _______________
d. between 6.8 and 7.4 ounces? P( ) = P( ) = _______________
Solution
a)
 Mean ( u ) =7
 Standard Deviation ( sd )=0.8/ Sqrt ( 40 ) = 0.1265
 Number ( n ) = 40
 Normal Distribution = Z= X- u / (sd/Sqrt(n) ~ N(0,1)                  
 a)
 P(X < 6.8) = (6.8-7)/0.8/ Sqrt ( 40 )
 = -0.2/0.1265= -1.5811
 = P ( Z <-1.5811) From Standard NOrmal Table
 = 0.0569                  
 b)
 P(X > 7.4) = (7.4-7)/0.8/ Sqrt ( 40 )
 = 0.4/0.126= 3.1623
 = P ( Z >3.1623) From Standard Normal Table
 = 0.0008                  
 c)
 To find P(a <= Z <=b) = F(b) - F(a)
 P(X < 6.8) = (6.8-7)/0.8/ Sqrt ( 40 )
 = -0.2/0.1265
 = -1.5811
 = P ( Z <-1.5811) From Standard Normal Table
 = 0.05692
 P(X < 7.4) = (7.4-7)/0.8/ Sqrt ( 40 )
 = 0.4/0.1265 = 3.1623
 = P ( Z <3.1623) From Standard Normal Table
 = 0.99922
 P(6.8 < X < 7.4) = 0.99922-0.05692 = 0.9423                  

