Find the equation of the regression line for the given data
Find the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The table below shows the heights (in feet) and the number of stories of six notable buildings in a city.
\"Height, x\",\"Stories, y\"
 772,51
 628,48
 518,52
 508,26
 496,38
 483,32
(A)Find the regression equation?
(a) Predict the value of y for x=499.
Choose the correct answer below.
A.46
B.50
C.37
D.not meaningful
(b) Predict the value of y for x=648
Choose the correct answer below.
A.46
B.55
C.37
D. not meaningful
(c) Predict the value of y for x=810
Choose the correct answer below.
A.46
B.50
C.55
D.not meaningful
(d) Predict the value of y for x=724
Choose the correct answer below.
A.37
B.55
C.50
D.not meaningful
Solution
a)
Using technology, we get              
               
 slope =    0.059499243          
 intercept =    7.400846365          
               
 Thus, the regression line is              
               
 y^ =    0.059499243x   + 7.400846365
*****************
b)
Plugging in x = 499 in the equation above:
Thus, if x =    499
   
 Then  
   
 y^ =    37.0909685 = 37 [answer]
*********************
c)
Thus, if x =    648
   
 Then  
   
 y^ =    45.95635571 = 46 [answer]
 ********************
d)
As 810 is not within the range of values here, it is
D. NOT MEANINGFUL.
********************
e)
Thus, if x =    724
   
 Then  
   
 y^ =    50.47829817 = 50 [answer]


